Bessel Capacities and Rectangular Differentiation in Besov Spaces

نویسنده

  • VIRGINIA NAIBO
چکیده

We consider the differentiation of integrals of functions in Besov spaces with respect to the basis of arbitrarily oriented rectangular parallelepipeds in R. We study almost everywhere convergence with respect to Bessel capacities. These outer measures are more sensitive than n-dimensional Lebesgue measure, and therefore we improve the positive results in [4].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on Gaussian Besov-Lipschitz spaces and Gaussian Triebel-Lizorkin spaces

In this paper we consider the Gaussian Besov-Lipschitz B α p,q (γ d) and Gaussian Triebel-Lizorkin F α p,q (γ d) spaces, for any α > 0, studying the inclusion relations among them, proving that the Gaussian Sobolev spaces L p α (γ d) are contained in them, giving some interpolation results and studying the continuity properties of the Ornstein-Uhlenbeck semigroup, the Poisson-Hermite semigroup ...

متن کامل

Rectangular Differentiation of Integrals of Besov Functions

We study the differentiation of integrals of functions in the Besov spaces B p (Rn), α > 0, 1 ≤ p < ∞, with respect to the basis of arbitrarily oriented rectangular parallelepipeds in Rn. We show that positive results hold if α ≥ n−1 p and we give counterexamples for the case 0 < α < n p − 1. Similar results hold for B p (Rn), q > 1. For more general bases we can also prove negative results for...

متن کامل

Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin Spaces and Applications to Problems in Partial Differential Equations

In their ground-breaking work [42], D. Jerison and C. Kenig have studied the well-posedness of the Poisson problem for the Dirichlet Laplacian on Besov and Bessel potential spaces, ∆u = f ∈ B α (Ω), u ∈ B α+2(Ω), Tru = 0 on ∂Ω, (1.1) ∆u = f ∈ Lα(Ω), u ∈ Lpα+2(Ω), Tru = 0 on ∂Ω, (1.2) in a bounded Lipschitz domain Ω ⊂ R. Let GD be the Green operator associated with the Dirichlet Laplacian in Ω ⊂...

متن کامل

Spectral invariance of Besov-Bessel subalgebras

Using principles of the theory of smoothness spaces we give systematic constructions of scales of inverse-closed subalgebras of a given Banach algebra with the action of a d-parameter automorphism group. In particular we obtain the inverse-closedness of Besov algebras, Bessel potential algebras and approximation algebras of polynomial order in their defining algebra. By a proper choice of the g...

متن کامل

Bessel sequences in Sobolev spaces

In this paper we investigate Bessel sequences in the space L2(R s), in Sobolev spaces Hμ(Rs) (μ > 0), and in Besov spaces B μ p,p(R s) (1 p ∞). For each j ∈ Z, let Ij be a countable index set. Let (ψj,α)j∈Z, α∈Ij be a family of functions in L2(R). We give some sufficient conditions for the family to be a Bessel sequence in L2(R s) or Hμ(Rs). The results obtained in this paper are useful for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005